Bisphenol A induces cell cycle arrest in primary and prostate cancer cells through EGFR/ERK/p53 signaling pathway activation
نویسندگان
چکیده
Bisphenol A (BPA) belongs to the class of chemicals known as endocrine disruptors and has been also involved in the pathogenesis and progression of endocrine related cancer such as breast and prostate cancers. Here, we have investigated the effect of BPA in human prostate cancer LNCaP cells and in human non-transformed epithelial prostate EPN cells. Our data showed that BPA induces the down regulation of cyclin D1 expression and the upregulation of the cell cycle inhibitors p21 and p27, leading to cell cycle arrest. Interestingly, we found that the BPA anti-proliferative response depends on a strong and rapid activation of epidermal growth factor receptor (EGFR), which stimulates ERK-dependent pathway. This, in turn, induces expression of p53 and its phosphorylation on residue Ser15, which is responsible for cell cycle arrest. EGFR activation occurs upon a cross talk with androgen (AR) and estradiol receptor-β (ERβ) which are known to bind BPA. Altogether, these findings show a novel signaling pathway in which EGFR activation plays a key role on BPA-induced cell cycle inhibition through a pathway involving AR and ERβ/EGFR complexes, ERK and p53. Our results provide new insights for understanding the molecular mechanisms in human prostate cancer. On the other, they could allow the development of new compounds that may be used to overcome human prostate cancer resistance to endocrine therapy in promising target therapeutic approaches.
منابع مشابه
Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance.
Growth factors and mitogens use the Ras/Raf/MEK/ERK signaling cascade to transmit signals from their receptors to regulate gene expression and prevent apoptosis. Some components of these pathways are mutated or aberrantly expressed in human cancer (e.g., Ras, B-Raf). Mutations also occur at genes encoding upstream receptors (e.g., EGFR and Flt-3) and chimeric chromosomal translocations (e.g., B...
متن کاملEpigallocatechin-3-Gallate Induces Apoptosis through Up-regulation of Bax and Down-regulation of Bcl-2 in Prostate Cancer Cell Line
Background and Aims: Epigallocatechin-3-gallate (EGCG) is a polyphenolic compound from green tea, which its anticancer effects on many types of cancers have been confirmed, but the molecular mechanism by which EGCG induces apoptosis remains unknown. The aim of the present study was to investigate anti-proliferative properties and apoptotic signaling pathway of EGCG on PC3 human prostate cancer ...
متن کاملA novel treatment approach for retinoblastoma by targeting epithelial growth factor receptor expression with a shRNA lentiviral system
Objective(s): Non-invasive treatment options for retinoblastoma (RB), the most common malignant eye tumor among children, are lacking. Epithelial growth factor receptor (EGFR) accelerates cell proliferation, survival, and invasion of many tumors including RB. However, RB treatment by targeting EGFR has not yet been researched. In the current study, we investigated the effect of EGFR down-regula...
متن کاملOleanolic Acid Induces p53 Dependent Apoptosis via the ERK/JNK/AKT Pathway in Cancer Cell Lines
We evaluated oleanolic acid (OA)-induced anti-cancer activity, apoptotic mechanism, cell cycle status, and MAPK kinase signaling in DU145 (prostate cancer), MCF-7 (breast cancer), and U87 (human glioblastoma) cells. The IC50 values for OA-induced cytotoxicity were 112.57 in DU145, 132.29 in MCF-7, and 163.60 in U87 cells, respectively. OA (at 100 μg/mL) increased the number of apoptotic cells t...
متن کاملInhibition of integrin-mediated crosstalk with epidermal growth factor receptor/Erk or Src signaling pathways in autophagic prostate epithelial cells induces caspase-independent death.
In vivo in the prostate gland, basal epithelial cells adhere to laminin 5 (LM5) via alpha3beta1 and alpha6beta4 integrins. When placed in culture primary prostate basal epithelial cells secrete and adhere to their own LM5-rich matrix. Adhesion to LM5 is required for cell survival that is dependent on integrin-mediated, ligand-independent activation of the epidermal growth factor receptor (EGFR)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017